

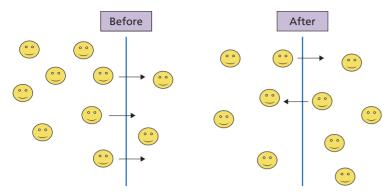
ACTIVITY SHEET ANSWERS

Chapter 8 Suggested answers

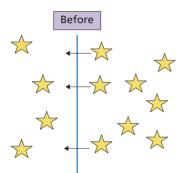
8.1 Cell membrane

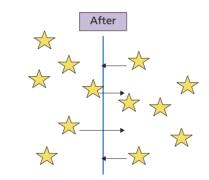
8.2 Movement across the plasma membrane

1 Osmosis: the net movement of water across the plasma membrane from a region of high concentration to a region of low concentration, without the use of energy, to create a state of equilibrium.

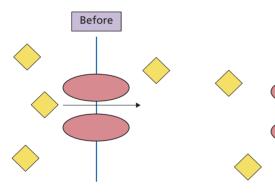

Diffusion: the passive (without energy) movement of small molecules across the plasma membrane from a region of high concentration to a region of low concentration of that molecule to create a state of equilibrium.

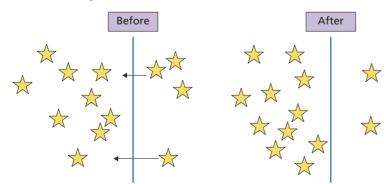
Facilitated diffusion: the passive (without energy) movement of larger molecules across the plasma membrane from a region of high concentration to a region of low concentration of that molecule with the aid of a carrier protein and protein channel to create a state of equilibrium.


Active transport: the active (requires energy) movement of molecules across the plasma membrane from a region of low concentration to a region of high concentration of that molecule.

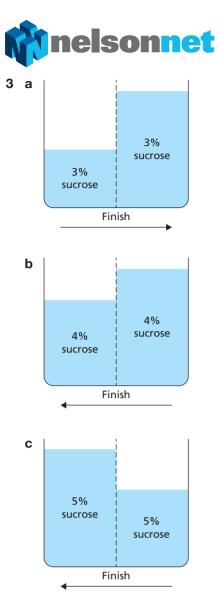


2 a Osmosis


b Diffusion



After


c Facilitated diffusion

d Active transport

2 of 6

8.3 Investigating osmosis

Aim

To investigate the effect of temperature on the rate of osmosis across a semi-permeable membrane

Hypothesis

The rate of osmosis will increase with an increase in temperature.

Safety

Risk	Risk prevention		
Hot water	Hot water can burn; pour carefully. If hot water comes in contact with the skin, run under cold water for 5 minutes.		
Knife	Use knife carefully when cutting potato. If a cut occurs apply pressure to the wound and have a teacher assess whether it requires a bandaid or stitches.		

Method

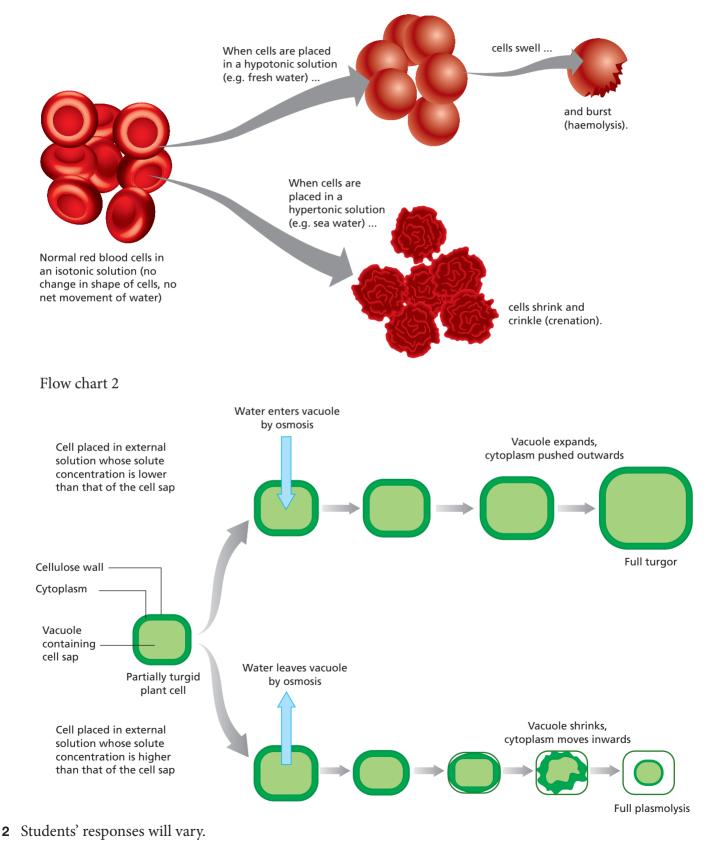
- 1 Cut four cubes of potato, each 3 cm \times 3 cm.
- 2 Cut a well in each cube, taking care not to cut all the way through.
- **3** Place one cube in a dish of water at 5°C until it is roughly level with the bottom of the well.
- 4 Place one cube in a dish of water at 15°C until it is roughly level with the bottom of the well.
- **5** Place one cube in a dish of water at 25°C until it is roughly level with the bottom of the well.
- 6 Place one cube in a dish of water at 35°C until it is roughly level with the bottom of the well.
- 7 Place 2 g of honey into each of the wells.
- **8** Keeping each temperature constant, record results every 30 minutes for 2 hours.
- **9** Record results.

8.4 Surface area to volume ratio

```
1 a 2 \text{ cm} \times 2 \text{ cm} \times 2 \text{ cm}
     Surface area = 2 \times 2 \times 6
                        = 24 \text{ cm}^2
           Volume = 2 \times 2 \times 2
                        = 8 \text{ cm}^{3}
               SA:V = 24:8
                        = 3:1
                        = 3
b 5 \text{ cm} \times 5 \text{ cm} \times 5 \text{ cm}
     Surface area = 5 \times 5 \times 6
                        = 150 \text{ cm}^{2}
           Volume = 5 \times 5 \times 5
                        = 125 \text{ cm}^{3}
               SA:V = 150:125
                        = 6:5
                        = 1.2
c 0.3 \text{ cm} \times 0.3 \text{ cm} \times 0.3 \text{ cm}
    Convert to appropriate scale -3 \text{ mm} \times 3 \text{ mm} \times 3 \text{ mm}
     Surface area = 3 \times 3 \times 6
                        = 54 \text{ mm}^2
           Volume = 3 \times 3 \times 3
                        = 27 \text{ mm}^{3}
               SA:V = 54:27
                        = 2:1
                        = 2
```

b	Cube	SA	V	SA:V
	0.5	1.5	0.125	12:1
	1	6	1	6:1
	2	24	8	3:1
	4	96	64	1.5:1

- c As the side dimension of the cube doubles the SA:V ratio decreases by half.
- **d** Nutrients and wastes must enter and exit through the plasma membrane. With a low SA:V ratio, substances would not enter or exit the cell quick enough to meet the cells demands, thus cells require a high SA:V.


3 a	Rectangle	Length	Width	Height	SA	V	SA:V
	1	32	16	1	1120	512	2.2
	2	16	16	2	640	512	1.3
	3	8	16	4	448	512	0.88
	4	8	8	8	384	512	0.75

- **b** As the height of the rectangular object increased the surface area decreased. The volume remained constant.
- **c** The surface area to volume ratio decreased as the height of the rectangular box increased.
- **d** Rectangle 1, $32 \times 16 \times 1$
- e Leaves are long and flat to give the highest surface area exposed to the sun for photosynthesis. They are thin so that diffusion of gases (CO_2 and O_2) to the cells can occur efficiently.

8.5 Vocabulary

- **1 a** Students' responses will vary. Students are recommended to show their paragraph to their teacher for correction.
 - **b** Flow chart 1

